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On large-amplitude pulsating fountains
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We study the behaviour of an upward vertical water jet of density, ρ, and surface
tension, σ, injected through a tube of diameter, D, with a momentum-averaged
velocity, V . These fountains are shown to exhibit large-amplitude oscillations in the
range 0.1 6 D/a 6 1.6, and 20 6 V 2/(gD) 6 400, where g is the acceleration due to
gravity and a is the capillary length, a ≡ (2σ/(ρg))1/2. The characteristic frequency of
the oscillations, f, and their limits of existence are studied experimentally. A model
is developed, leading to the expression for the frequency:

f =
g

3V
.

This expression is shown to be in good agreement with existing data and with
new measurements, conducted over a wide range of Bond (Bo ≡ D/a) and Froude
(Fr ≡ V 2/gD) numbers. The stability of the model is considered and the limits of the
oscillatory regime are related to the hydrodynamic properties of the flow.

1. Introduction
Greek mythology considers fountains as the place where Naiads‡ play. We follow

this tradition and try to prove that these Nymphs are not responsible for the oscillations
of some of the fountains we encountered . . . .

The water fountains we consider point vertically upwards and are characterized
by an internal diameter D, and an outer diameter Do. The fluid of density, ρ, and
surface tension, σ, is ejected with a momentum-averaged velocity V , as presented in
figure 1(a).

Depending on the initial momentum flux (∼ ρV 2), these fountains are known to
exhibit several modes of behaviour (Schulkes 1993). For very low-momentum fluxes,
the water exiting the fountain remains attached to the nozzle due to capillary and
gravity forces (figure 1b). This first regime has been studied by Dias & Vanden-
Broeck (1990). For values of the momentum flux above a certain threshold, a second
regime is achieved where the fluid detaches from the nozzle, forming an upward
moving jet. The upward moving fluid then changes kinetic into potential energy until
it reaches a maximum height at which point a lump of fluid begins to accumulate
at the tip of the fountain. As the mass of the lump increases, the pull of gravity

† Present address: Institut de Recherche sur les Phénomènes Hors Equilibre, Université de
Provence, centre de St. Jérôme, service 252, Marseille Cedex 20, France.
‡ From Greek naiein, ‘to flow’: one of the nymphs of flowing water springs, rivers, fountains, lakes.

The Naiads, appropriately because of their relation to freshwater, were represented as beautiful,
lighthearted, and beneficent. Like the other classes of nymphs, they were extremely long-lived,
although not immortal.
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Figure 1. (a) Sketch of the fountain, (b) lower limit, D = 1.194 mm and V = 0.63 m s−1,
(c) Oscillating regime, D = 1.194 mm and V = 1.61 m s−1, (d) Upper limit, D = 1.194 mm and
V = 2.21 m s−1.

eventually overcomes the jet’s momentum and the lump begins to fall (figure 1c).
As the falling lump reaches the nozzle, it dislodges from the jet and a new cycle
begins. This rising and falling process repeats itself in a periodic or quasi-periodic
fashion resulting in large-amplitude oscillations in the fountain’s height as shown
in figure 2. As the water momentum is further increased, this oscillatory behaviour
persists at increasing amplitudes until a second threshold limit is reached above which
the fountain no longer exhibits high-amplitude pulsations (figure 1d). In the case of
water fountains, the intermediate, large-amplitude oscillatory regime exists within the
limits 0.1 6 D/a 6 1.6 and 20 6 V 2/gD 6 400, where g is the acceleration due to
gravity and a is the capillary length, a ≡ (2σ/(ρg))1/2.

Over the years, several studies have dealt with large-amplitude oscillating fountains
(Villermaux 1994) and plumes (Priestley 1953; Turner 1966). In the case of fountains,
Villermaux shows that a vertical water jet undergoes self-sustained pulsations in height,
associated with the gravity-induced backflow of the jet on itself. He then uses the
diameter, D, of the jet as the characteristic length involved in the backflow process
and proposes the use of a delay time τd ∼ (D/g)1/2 to implement the nonlinear delayed
saturation (NLDS) model of Villermaux & Hopfinger (1993) to evaluate the period of
the oscillations. However, in the NLDS model (dA/dt = rA(t)− µ|A(t− τd)|2A(t)), the
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Figure 2. Large amplitude pulsating mode of a water fountain, D = 1.194 mm and V = 1.33 m s−1.

period of the oscillations depends on the parameters r, µ and τd. Villermaux (1994)
chooses the delay, τd, but does not specify r and µ, which prevents the determination
of the period of the oscillations. In this sense, the model he proposes is not complete
and no comparison can be made with our contribution.

Here, we will show that the period of the oscillations does not depend on the
diameter of the jet, but rather scales as T ∼ (Hmax/g)1/2, where Hmax is the maximum
height reached by the fountain (Hmax = V 2/2g).

The same scaling was obtained by Turner (1966), considering the oscillations
of plumes which are initially buoyant and become heavy as they mix with the
environment. This system also exhibits large-amplitude pulsations (of the order of
the maximum height) with a characteristic period τ related to the maximum height
zmax of the plume by the relation τ = C(zmax/∆2)

1/2, where ∆2 is a reduced gravity
and C is a constant that was evaluated experimentally and found to be close to 14.
In the case of fountains, the same dimensional analysis can be made in which case
∆2 reduces to g so that τ ∼ (zmax/g)1/2.

This paper addresses issues concerning the physics of the oscillations, the evolution
of their characteristic frequency and their limits of existence. Physical models are
developed and compared with existing experimental data and with new measurements,
performed over a wide range of jet diameters and velocities. Section 2 presents the
experimental set-up and the range of variation of the control parameters. Section 3
is dedicated to the presentation of the experimental results and § 4 to the model. The
validity and stability of the model are discussed in § 5 and the limits of the pulsating
regime in § 6.

2. Experimental set-up
All the reported experiments were performed using deionized water at room temper-

ature (22◦C), the properties of which are recalled in table 1, where ν is the kinematic
viscosity. Deionized water was supplied to the fountain’s nozzle at a constant pressure
through a regulator and flowmeter. The nozzles consisted of cylindrical, stainless steel
hypodermic needles with inner diameter, D, outer diameter Do, and length/diameter
ratios L/D > 50. In our experiment, the external diameter, Do, is not varied indepen-
dently of D but is fixed by the thickness of the material used to make the needles. The
relation between Do and D can be well approximated by the third-order polynomial
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ρ(kg m−3) ν(m2 s−1) σ(kg s−2) a(m)

1000 10−6 0.073 3.8× 10−3

Table 1. Physical properties of dionized water at 22◦C.

Do = M0 + M1D + M2D
2 + M3D

3 with M0 = 4.16 × 10−5, M1 = 1.83, M2 = −501
and M3 = 1.01× 105. The control parameters of the experiments are the nozzle inner
diameter D, and the jet mean exit velocity V0 defined as the ratio of the mean exit
flow rate to the exit cross-section area. The mean exit flow rate was measured with
an accurate rotameter (130 units corresponding to 19.3 cm3). The exit velocity profile
was estimated assuming a fully developed pipe flow so that, as shown in Appendix A,
the momentum-averaged velocity, V , is equal to 2/

√
3V0 for a laminar jet and very

close to V0 for a turbulent one. The Reynolds number Re, for transition from laminar
to turbulent flow was determined for each needle using tilting (see Appendix A) and
was found to vary from Re ≈ 2500 to Re ≈ 4000, where Re ≡ V0D/ν. The range of
variation of the parameters D, Do and V0 is reported in table 2, where subindex 1
corresponds to the lowest threshold of oscillation, and 2 to the upper one. The corre-
sponding Reynolds numbers are also presented in table 2. The transition values, V01

and V02, between the oscillating regime and the non-oscillating one, are determined
experimentally with an accuracy of 20%, corresponding to the repeatability of the
measurements. For the smallest diameters used (D = 0.318 and 0.394 mm), as soon as
the jet detaches from the nozzle we always observed an umbrella-like fountain without
any oscillating regime in between (figure 1d). Thus, we only report the velocity V01

in the table. For the next two diameters (D = 0.495 and 0.584 mm), the difference
between V01 and V02 corresponds to less than one graduation on the rotameter;
therefore, no systematic study of the evolution of the frequency was done in these
cases. For these diameters, V01 and V02 were determined by weighting and timing
the outflowing water. For all other cases, the time evolution of the fountain’s height
was recorded using a high-speed video camera Ektapro-1000. Digital image process-
ing was applied to the recorded data using the NIH image 1.60 image processing
package and Matlab. A threshold method was applied to obtain a binary image, the
background corresponding to 0 and the water jet to 1. Defining a window that was
approximately two diameters wide and more than 1.5 Hmax long, the Matlab program
projected the matrix corresponding to this window onto a line, and determined the
height of the fountain as the location of the furthest 1 value found. This method
does not assume continuity of the jet. The instantaneous height of the fountain is
defined as the location of the highest particle of water on the axis. The framing rate
was always adjusted to ensure an accurate resolution of the frequencies of interest
(typically 20 frames per period). Between 1024 and 2048 images were recorded for
each condition, and the resulting H(t) file was then processed with Matlab, using a
fast Fourier transform routine.

3. Experimental results
An example of the time evolution of the height of the fountain, H(t), is presented

in figure 3, corresponding to the same conditions as the visualization sequence shown
in figure 2. One notices that the maximum height, Hmax = V 2/2g ≈ 9 cm, is rarely
reached, which means that some energy losses prevent the initial kinetic energy
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D (mm) Do (mm) V01 (m s−1) V02 (m s−1) Re1 Re2

0.318 0.635 1.28 — 407 —
0.394 0.711 0.79 — 311 —
0.495 0.813 0.77 1.2 381 594
0.584 0.902 0.71 1.3 414 759
0.838 1.27 0.63 1.5 527 1257
1.19 1.65 0.60 1.9 714 2261
1.60 2.11 0.61 2.1 976 3360
2.16 2.77 0.60 2.7 1290 5832
3.2 4.0 0.76 2.6 2432 8320
4.1 6.1 0.9 2.3 3690 9430

Table 2. Range of variation of the different relevant parameters.
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Figure 3. Time evolution of the fountain’s height, D = 1.194 mm and V = 1.33 m s−1.

being fully converted in potential energy. To quantify this effect, we define a mean
maximum height, Hm, which is also presented in figure 3. These losses are considered
in more detail in § 5. In each case, the characteristic frequency of the pulsation
was measured from the power spectrum of these measurements. The corresponding
Fourier transform of the time evolution presented in figure 3 is shown in figure 4.
Note that the Fourier transform exhibits a clear peak, indicating that in this case, the
characteristic frequency of the pulsation is 2.3 Hz. This frequency, f, was found to
monotonically decrease as V was increased (figure 5).

Furthermore, in the whole velocity range, the frequency appears to be independent
of the nozzle diameter, D, that was varied by a factor of 5. Close to the lower and
upper limits of the pulsating regime, the measured noise that can be noticed in figure 4
becomes of the same order as the signal itself and no characteristic frequency could
be measured.
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Figure 4. Fourier transform of the fountain’s height signal obtained with D = 1.194 mm and
V = 1.33 m s−1.
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Figure 5. Evolution of the characteristic frequency with the velocity V for different diameters D.

4. The model
In the ascending portion of the cycle, we consider that the upward moving fluid

loses its momentum because of gravity until it reaches a maximum height, Hmax .
Then, under the combined effect of gravity and of the momentum flux provided by
the jet, a fluid lump of mass, M, forms at the tip and begins to fall with a velocity U
(figure 6). When the falling liquid lump reaches the nozzle, it dislodges from it, and
a new oscillation cycle begins.

Assuming that at the end of the descending portion of the pulsation the entire
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mass of the lump instantaneously detaches from the nozzle, the ascending jet is
simply described by the conservation of mass and energy. Thus, v(z)s(z) = VS0, and
ρV 2 = ρv2(z) + 2ρgz, where v(z) and s(z) are respectively the velocity and cross-
sectional area of the jet at the z-location. Correspondingly, V is the exit characteristic
velocity and S0 ≡ πD2/4 the exit cross-section. The conservation of energy takes the
form

v(z)

V
=

(
1− 2gz

V 2

)1/2

. (4.1)

Equation (4.1) gives the velocity v of the jet at each z-location, from z = 0 where
v = V to z = Hmax = V 2/2g where v = 0. Considering the dynamics of the lump
as shown in figure 6, the conservation of mass and momentum, applied to the lump,
leads to

dM

dt
= ρs(z) [v(z)−U(z)] (4.2)

and
d(MU)

dt
= −Mg + ρs(z)v(z) [v(z)−U(z)] (4.3)

where M = U = 0 at z = Hmax . Transforming the time derivative into a space one
with the relation U = dz/dt and introducing dimensionless variables z∗ = z/Hmax,
t∗ = tV/(4Hmax), U

∗ = 4U/V , and M∗ = M/(ρS0Hmax), one gets the following forms
for the conservation of mass and momentum:

dM

dz
= 4

v −U
Uv

(4.4)

and

U
d(MU)

dz
= −8M + 4(v −U). (4.5)

The velocity of the jet, given by equation (4.1), is reduced to

v = 4(1− z)1/2. (4.6)

For simplicity, in equations (4.4), (4.5) and (4.6), we have dropped the asterisks in
the notation of the dimensionless variables. The unknowns being U(z) and M(z), the
system (4.4) and (4.5) with (4.6) must satisfy the conditions U(1) = v(1) = M(1) = 0.
This system can be solved exactly, making the guess that U and M depend on z
through the same function as v, that is U(z) = av(z) and M(z) = bv(z) with a and
b constants. This assumption satisfies the limit conditions since v(1) = 0. The two
constants a and b are determined using the equations (4.4) and (4.5):

b = −1

2

(
1− a
a

)
(4.7)

and

2a2 − a− 1 = 0⇒
{
a1 = 1

a2 = − 1
2
.

(4.8)

The first solution (a1 = 1, b1 = 0) describes the evolution of the lump during the
ascending phase. All the fluid of the lump from the previous cycle has been shed
and the new cycle starts with an empty lump (M = 0) that rises with the same
velocity as the jet (U = v). This first solution applies until z = 1. The second solution
(a2 = −1/2, b1 = 3/2) describes the descending part of the cycle.

Concerning the mass of the lump, we conclude that at the end of the descending
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Figure 6. Model for the interaction.

phase, M(0) = 6 since v = 4 and M = bv. In dimensional form, this means that the
mass of the lump at the point where it dislodges from the nozzle is M = 6ρS0Hmax .

The above solution shows that, on the way down, the velocity of the lump at each
z-location is half the velocity of the ascending jet at the same location. In other
words, it takes twice as long for the lump to fall down as it took the fluid element to
rise from the nozzle to the tip of the fountain. Therefore, the total period, T , of the
oscillation is three times the ascending time Ta. Using U = v for the ascending phase,
one gets

Ta =

∫ 1

0

dz

v(z)
=

1

2
. (4.9)

The period of the pulsation is then T = 3/2. Expressing the effect (the oscillation)
with a Strouhal number, St ≡ fD/V , and the cause (gravity) with a Froude number,
Fr ≡ V 2/gD, the oscillation satisfies

St = 1
3
Fr−1. (4.10)

This linear dependency is plotted in figure 7, and is compared to the experimental
results. Observe that the measured Strouhal numbers are in good quantitative agree-
ment with the model. The estimated error in the measurements is approximately 15%,
according to their repeatability.

In Villermaux (1994), the reported experiment is conducted using tap water with
a converging nozzle of exit diameter, D = 3 mm, and a mass-averaged velocity
V0 = 1.5 m s−1. According to the author, the oscillation frequency is about 2 Hz. The
model presented above can be tested on this set of data, which is the only one we
found in the literature. The jet Reynolds number being Re = 4500, we assume the jet
to be laminar and obtain the momentum-averaged velocity V = 1.73 m s−1, which
leads to f = g/(3V ) = 1.9 Hz (for a turbulent jet, V = 1.5 m s−1, one gets f = 2.2 Hz).
This is consistent with Villermaux’ observations.

5. Validity and stability of the model
The model we propose assumes a ‘perfect cycle’, in the sense that the fluid always

reach Hmax , that the lump does not break until it reaches the nozzle and dislodges
from it instantaneously, prior to the new cycle. These assumptions are to be tested in
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Figure 7. Comparison between the model and the experimental data obtained with different
diameters.

this section as well as the mechanism by which the jet communicates momentum to
the lump.

It was assumed that the momentum of the jet is transmitted to the whole lump
instantaneously so that the lump behaves like a ‘solid body’. In other words, a model
with interacting solid spheres, such as a one-dimensional juggler, should lead to the
same result, as far as the period of the oscillation is concerned (see Appendix B).
To analyse the validity of this assumption, let us estimate the order of magnitude of
the time required to exchange momentum between the jet and the lump. Consider
a lump characterized by its length Lp and its width Dp (figure 6). In a reference
frame stationary with respect to the lump, the jet enters the lump with a velocity,
Vj = v(z)−U(z), and a diameter Dj = (4s(z)/π)1/2, respectively of the order of V and
D. As the jet discharges into the lump, the momentum of the jet, ρV 2

j D
2
j ∼ ρV 2D2, is

transferred to the fluid inside the lump, inducing a turbulent motion with mean axial
velocity Vp:

ρV 2
p D

2
p ∼ ρV 2D2 or equivalently

Vp

V
∼ D

Dp
. (5.1)

The lateral transfer of momentum over the distance Dp occurs in a characteristic time
Td ∼ (Dp)

2/νt, where νt is the turbulent kinematic viscosity. We estimate νt ∼ αVpDp
where α is a constant smaller than 1, Landau & Lifchitz (1971). The characteristic
time of interaction of the jet with the lump can be estimated as Ti ∼ Lp/Vp. If the
two times Ti and Td are of the same order of magnitude, the momentum from the jet
is transmitted to the whole lump during the interaction. According to the previous
estimates, this condition can be written as

Lp

Vp
∼

D2
p

αVpDp
or equivalently

Lp

Dp
∼ 1

α
. (5.2)
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From pictures (figure 2), 1/α is estimated to be between 3 or 4. The length of the lump
is evaluated, requiring that the induced kinetic energy in the lump ρV 2

p is converted
into potential energy over its length Lp, resulting in

ρgLp ∼ ρV 2
p or equivalently

Dp

D
∼
(
α
V 2

gD

)1/3

. (5.3)

In the experiment presented in figure 2, the Froude number is of the order of 150,
which leads to Dp/D ∼ 3.5. This estimation is in good qualitative agreement with the
experiments.

Finally, using equations (5.2) and (5.3), the mass of the lump, M ∼ ρD2
pLp, is

evaluated as

M ∼ ρD3 V
2

gD
or M ∼ ρD2Hmax . (5.4)

This relation has the same form as the one obtained from the model (M = 6ρS0Hmax).
We then conclude that the order of magnitude analysis is consistent with the assump-
tion that the transfer of momentum to the whole lump is done during the time of the
interaction.

We now consider the stability of the model regarding the energy losses that occur,
for example, during the shedding of the lump at the end of a cycle or when a small
amount of liquid is transported into a new cycle (figure 2, where during the ascending
phase, some of the liquid from the previous cycle remains). If 1/2ρV 2ε represents this
energy loss, the energy balance leads to a new expression for v(z):

v(z)

V
=

(
1− 2gz

V 2
− ε
)1/2

. (5.5)

This expression is analogous to equation (4.1) and both are the same for ε = 0.
This loss of energy alters the maximum height, Hm, reached by the jet which can be
compared to Hmax, obtained without losses:

Hm =
V 2

2g
(1− ε) or

Hm

Hmax

= (1− ε). (5.6)

The value of ε can be evaluated experimentally from figure 8, where we present the
mean maximum height, Hm, as a function of the maximum height, Hmax , for different
nozzle diameters. From this figure, we get ε ≈ 0.24, which means that about 24% of
the initial energy is lost, whether in the shedding process or in the transport of a
recirculating mass.

Focusing on the dynamics of the lump, equations (4.2) and (4.3) remain unchanged.
Furthermore, using the same parameters for the non-dimensionalization of the system,
we get the same system as (4.4) and (4.5) with just a new expression for the jet velocity
at each z location:

v(z) = 4(Hm − z)1/2. (5.7)

In this expression, the asterisks have been omitted for simplicity. Making the same
assumptions, U(z) = av(z) and M(z) = bv(z), it follows that equations (4.7) and (4.8)
still hold, so that the final period, T , is three times the rising time, Ta defined as:

Ta =

∫ Hm

0

dz

v(z)
=
H

1/2
m

2
≈ 1

2

(
1− ε/2

)
(5.8)

which shows that the effect of the energy loss is to change the period of the oscillation
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Figure 8. Mean maximum height as a function of the maximum height.

by a factor ε/2. According to the previous estimation of ε, the period should be 12%
shorter than the one calculated with the no-energy-loss model.

Furthermore, the interaction of the lump with the nozzle at the end of each cycle
occurs in a characteristic time Ti ∼ 2Lp/V that has been considered, in the model, to
be small compared to the period T ∼ 3V/g. Using the evaluations (5.2) and (5.3) for
Lp and Dp, we get:

Ti

T
∼ 2

3

(
1

α

gD

V 2

)2/3

. (5.9)

For a typical value Fr = 100, we get Ti/T ≈ 0.07. Thus this effect could increase the
estimated period of the oscillation by as much as 7%.

To conclude this section on the stability of the model, it is of interest to note
that the energy loss tends to decrease the total period but the time it takes for this
energy loss to happen tends to increase it. The two effects being of the same order of
magnitude, it is reasonable to conclude that the model is stable, and that the ‘perfect
cycle’ period is a good evaluation of the real period of the oscillations.

6. Limits of the pulsating regime
In this section we identify the physics of the lower and upper velocity thresholds of

the pulsating mode.
In the lower range, a spherical bulb forms at the nozzle exit and remains ‘attached’

to it due to both capillary and gravity forces (figure 1b). The pulsating mode starts once
the jet momentum flux is high enough to overcome these two forces. The capillary
action is of the order πσDo. From experimental observations, the characteristic
diameter of the bulb is of the order of 2Do, and its weight can be estimated as
4/3πD3

oρg. The threshold velocity is then given by ρπD2V 2/4 = 4/3πD3
oρg + πσDo,
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Figure 9. Lower velocity threshold of the pulsating mode.

which leads to

V 2

gD
=

16

3

(
Do

D

)3 [
1 + 3

8

(
a/Do

)2
]
. (6.1)

According to table 2, 0.635 < Do < 6.1 mm so that 0.14 < 3
8

(
a/Do

)2
< 14. Sur-

face tension effects are thus dominant for small needles whereas the gravity effect
dominates for the bigger ones. The critical value for the Froude number, derived in
equation (6.1), is compared to the experimental limits in figure 9. The agreement is
within 20%, which is in the range of the experimental accuracy.

Concerning the upper threshold, we distinguish two different mechanisms leading
to the end of the oscillations. The first one originates in the capillary instability of
the Rayleigh-type undergone by the cylindrical jet. As the height of the fountain is
increased, this instability has time to develop so that the jet breaks into droplets
prior to reaching the maximum height. When these droplets deviate from the axis
a sufficient distance preventing them from interacting with the ascending fluid, the
driving cause of the oscillation is lost and the fountain exhibits a quasi-constant height,
close to its maximum height Hmax (figure 1d). If the breakup process were symmetric,
all the drops would remain on the axis of symmetry and the oscillations would
continue independently of the Rayleigh instability. However, the breakup process is
not perfect and as they form, the drops acquire a small radial velocity Vy . When
they have time to deviate a distance of the order of the jet diameter D before they
reach Hmax, the oscillations stop. Assuming the radial velocity Vy to be proportional
to the characteristic velocity V (Vy ∼ γV and γ � 1), we define a deviation time,
τdev ∼ D/Vy , and compare it to the rising time Ta ∼ V/g which is the maximum time
allowed for the deviation. To be more precise, we compare Ta to τdev + τR , where τR
is the Rayleigh breakup time, τR ∼ 3(ρD3/(8σ)

1/2
. The limit τR + τdev = Ta implies

V 2

gD
∼ 1

γ
+

3

2

1

γ1/2

(
D

a

)
. (6.2)
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D (mm) Do (mm) V0 (m s−1) Re V Hmax/D

0.495 0.813 1.2 594 1.39 198
0.584 0.902 1.3 759 1.5 196
0.838 1.27 1.5 1257 1.73 182
1.19 1.65 1.9 2261 2.19 206
1.60 2.11 2.1 3360 2.42 187
2.16 2.77 2.7 5832 2.7 172
3.2 4 2.6 8320 2.6 107
4.1 6.1 2.3 9430 2.3 66

Table 3. Upper threshold, first mechanism.

D (mm) Do (mm) V (m s−1) K

2.16 2.77 2.7 147
3.2 4 2.6 166
4.1 6.1 2.3 147

Table 4. Upper threshold, second mechanism.

According to (6.2), the Froude number should be constant at the upper threshold, in
the limit D/a� 1. Noticing that Hmax = V 2/(2g), the above relation reduces, in this
limit, to Hmax/D = 1/(2γ). Table 3 presents, for each needle, the mean exit velocity at
the upper limit, the corresponding Reynolds number, the exit characteristic velocity
and finally the critical aspect ratio. In the range 0.495 < D < 1.6 mm we get that
Hmax/D = 194± 6%. This critical value corresponds to γ ≈ 0.25%. From table 3, one
also may notice that the above criterion does not apply for diameters bigger than
1.6 mm. An additional physical phenomenon affects the stability of the fountain when
the dynamic pressure of the jet, ∼ ρV 2, becomes of the same order of magnitude as
the surface tension restoring action, ∼ 4σ/Dp (Taylor 1949). In this limit, the lump
bursts close to the maximum height and no large-amplitude oscillations are observed.
This limit is the one usually observed in public fountains. Using the expression (5.3)
for Dp, the threshold is reached for

V 2

gD
= K

( a
D

)3/2

. (6.3)

The value of K can be evaluated from the experimental values presented in table 4
as K ≈ 153± 10%. The three limiting mechanisms just identified define an existence
domain for the large-amplitude oscillating fountains. This domain is presented in the
plane

(
a/D, V 2/(gD)

)
in figure 10 together with the experimental measurements of

the oscillations and the experimental limits of existence. Thus, the domain in which
the oscillations can be observed extends from a/D ≈ 0.6 to a/D ≈ 10, which, for
water, corresponds to D = 6.3 mm and D = 0.38 mm respectively. These limits are
in close agreement with our observations, and one should notice that close to these
limits, the domain of existence in terms of V 2/(gD) is narrow. It is to be emphasized
that these limits depend on the relation Do = f(D), as already notice in the study of
the lower threshold.
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Figure 10. Region of existence of the pulsating regime.

7. Conclusion
In a restricted range of Bond and Froude numbers, an upward moving vertical

fountain is shown to exhibit large-amplitude pulsations. The frequency of these
oscillations is found experimentally to be inversely proportional to the jet’s initial
velocity, and to be independent of its diameter.

A model based on the interaction of a fluid lump forming at the fountain’s tip and
the ascending jet is proposed, and shown to be in good agreement with the measured
frequencies.

The pulsating mode is shown to be bounded by upper and lower velocity thresholds.
The lower limit is determined by the minimum momentum flux needed to overcome
gravity and capillary forces. The upper limit results from instabilities, either in the jet
or in the lump, leading to the loss of the interaction between the rising and falling
fluid.
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Appendix A. Study of the tilted fountain
In order to determine the functional dependency of the maximum fountain height

needed in the model of the pulsations, we conducted a parametric study of the
stationary trajectories of fountains tilted at an angle θ with the vertical. The measured
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Figure 11. Variation of the height as a function of the Reynolds number, D = 1.6 mm and θ = 15◦.

non-dimensional maximum heights are shown in figure 11, as a function of the jet
Reynolds number, Re ≡ V0D/ν, for D = 1.6 mm and θ = 15◦. The experimental
measurements show an inflection point at a Reynolds number around 4000. The
amplitude of this inflection is well above the experimental error which is estimated at
5%. The variation of momentum of each fluid element is due to the forces acting on
it, namely gravity and viscosity. Let us first neglect the viscosity effect. If the initial
velocity profile is a top hat type, each fluid element has originally the same momentum
MV , and can reach the same maximum height Hmax = (V cos(θ))2/(2g) after the time
Ta, needed for the gravity to reduce this momentum to 0 (MV ∼MgTa). This
constitutes the ballistic approximation. However, the nozzle we considered exhibits
a fully developed pipe flow profile at the exit, which means a parabolic profile in a
laminar flow, and a logarithmic one in a turbulent flow (Landau & Lifchitz 1971).
The fluid elements do not all have the same momentum at the nozzle’s exit and we
must take into account the velocity profile to calculate the actual height reached by
the jet. This can be done by defining an equivalent jet with a top hat profile that has
the same momentum as the original jet. Considering a cylindrical nozzle of diameter
D, the radial distance being r, the velocity V of the equivalent jet is related to the
actual velocity v(r) by the relation

ρ
πD2

4
V 2 = ρ2π

∫ D/2

0

rv(r)dr. (A 1)

In the laminar case, v(r) = 2V0

[
1−

(
2r/D

)2
]

and the integration of equation (A 1)

leads to the relation

V =
2√
3
V0. (A 2)

In the turbulent case, v(r)/u∗ = B + 1/K ln
[
(D/2− r)u∗/ν

]
where u∗ is the friction

velocity and K and B two constants whose values can be taken as 0.41 and 5
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Figure 12. Parabola obtained with a laminar tilted fountain, V0 = 1.3 m s−1, D = 1.6 mm, and
θ = 25◦.

respectively. The integration of equation (A 1) leads to the relation

V = V0

(
1 +

5

4K2

(
u∗

V0

)2
)1/2

. (A 3)

The term u∗/V0 is always small compared to 1 and we can assume that the relation
V = V0 holds for a turbulent flow, thus reflecting that the turbulent velocity profile is
close to a top hat one.

Using this equivalent jet, we can apply the ballistic approximation to obtain
two evaluations for the maximum height Hmax = V 2/2g valid for the laminar and
turbulent cases respectively. These two approximations are presented in figure 11. As
expected, the laminar calculation agrees very well with the experimental measurements
corresponding to the small Reynolds numbers (from 0 to 4000), while the turbulent
calculation reproduces large Reynolds number cases (> 4000). The critical value
4000 is only representative of this injector. For the different fountains we used, this
threshold value was found to vary from Re = 2500 up to Re = 4000.

The parabolic nature of the trajectory is presented in figure 12. In this example,
D = 1.6 mm, θ = 25◦ and the mean velocity V0 is 1.3 m s−1. The vertical and
horizontal lengths have been non-dimensionalized by h∗ = h(2g)/(V cos(θ))2 and
x∗ = xg/(V 2sin(2θ)). Since, in this case, the Reynolds number is 2080, we use the

laminar value of V (V = 2/
√

3V0 ≈ 1.5 m s−1). The theoretical curve presented in
figure 12 corresponds to the parabola obtained with the ballistic approximation:

h∗ = 4x∗(1− x∗). (A 4)

One notices that the two curves are close to each other, the experimental points
lying under the theoretical prediction due to the effect of the viscous drag which was
neglected. A similar effect of the viscosity was noticed by G. I. Taylor during his
study of water-bells (Taylor 1959).
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Figure 13. Scheme of the juggler problem.

Appendix B. The one-dimensional juggler
We consider here the case of a juggler who throws solid spheres vertically with a

constant initial velocity V at a constant period Te. In the one-dimensional approxi-
mation, these balls never deviate from the vertical axis. We assume that all the balls
have the same initial mass M, and that each time they collide, they form a new sphere,
whose mass and velocity are given by the conservation of mass and momentum. The
question is to determine, as a function of Te, the time T it takes for all the spheres
to fall back to their initial position.

If only one ball is thrown by the juggler, this ball reaches its maximum height
Hmax = V 2/2g, and then falls back to the origin after the time Tf = 2V/g. In the
following, both quantities Hmax and Tf are used to non-dimensionalize length and
time. Obviously, if Te > 1, the time it takes for all the balls to fall back is 1, the
individual time of flight. The problem Te 6 1 is more interesting, in the sense that in
the limit Te → 0, it recovers our model of the liquid fountain. The case Te = 3/5, is
presented in figure 13. The first ball is released at the time t = 0, reaches its maximum
z = 1 at t = 1/2 and interacts with the second ball (emitted at t = 3/5) at the time
Tm(1) = 4/5. This interaction takes place at Zm(1) = 16/25, and the resulting ball falls
back to the origin at the time T = 6/5 > 1.

The general problem leads, after some calculations, to the following expressions for
the time Tm(n) and the location Zm(n) of the nth collision:

Tm(n) =
3 + (4n− 1)Te

6
, (B 1)

Zm(n) = 1−
(

2n+ 1

3
Te

)2

. (B 2)

We then consider the family of Te such that for n = n∗ the nth collision takes place
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at the origin. The first members of this family are
[
1, 3

5
, 3

7
, 3

9
, 3

11
, . . .
]
. From equation

(B 2), we get that the number of collisions n∗ made by the falling ball reaching the
origin is related to Te by the relation

n∗ =
1

2

(
3

Te
− 1

)
. (B 3)

Using this relation in equation (B 1) leads to the evaluation of the period:

T = 1
2

(3− Te) . (B 4)

For Te = 1, we recover T = 1 and in the limit Te → 0, the period tends to 3/2,
which is the same limit as the one obtained with the continuous model presented in
§ 4.
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